Antiderivatives

Outcomes: Find the antiderivatives of functions.

Part A - Polynomial Functions:

Review: Find the derivative of

a)
$$y = x^2$$

b) $y = x^2 + 3$
c) $y = x^2 - 7$

Investigate: If $f'(x) = 3x^2$, what is f(x).

- The original function from which the derivative was obtained is termed the antiderivative, the integral or the primitive.
- Anti-differentiation is the inverse operation of differentiation.
- Like the derivative the antiderivative may be represented in various ways.
 If y = f'(x) is the derived function then y = F(x) is the antiderivative.
 Remember that any function in the form y = F(x) + C will have the same derivative.

$$\frac{d}{dx}\left(F(x)+C\right) = f(x)$$

The antiderivative, or integral, is commonly represented by the following:

 $\int f(x)dx$ 'read - the integral of f(x) with respect to x'

$$\int 3x^2 = x^3 + C$$

So doing an antiderivative is like doing a derivative backward.

- Derivatives, we reduce by a degree and multiply.
- Antiderivatives we
- **1.** Find the general antiderivative of f(x) = 1 or $f = x^0$
- **2.** Find the indefinite integral when $F(x) = \int x dx$
- **3.** Find the general antiderivative of f(x) = 2x + 3

- **4.** Find the (most general) antiderivative of $f(x) = 4x^3 6x^2 + 11$
- **5.** Integrate $F(x) = \int x^2 dx$
- **6.** Find the general primitive of $f(x) = x^3$
- **7.** Find the antiderivative of $f(x) = \sqrt{x}$

Part B - TRIGONOMETRY:

- **1.** Find the antiderivative of each of the following
 - a) $f(x) = \sin x$ b) $f(x) = \sin(3x)$
 - c) f(x) = cosx d) f(x) = cos(5x)

2. Find the antiderivative of on the interval

 $f(x) = \cos x - \sin x$

3. Find the most general antiderivative of $f(x) = \sin x \cos x$

Part C - EXPONENTS AND LOGARITHM:

1. Find the antiderivative of f(x), $f(x) = -3e^{-x} + 6e^{2x}$

2. Find the antiderivative of f(x) on the interval $(0,\infty)$

$$f(x) = \frac{2}{x^2} - \frac{5}{x} + x$$

Complete the following table	
Function: $f(x) =$	Particular most general antiderivative
0	
1	
x ⁿ	
$\frac{1}{x}$	
e ^{kx}	
coskx	
$\sin kx$	

Complete the following table

Homework: Pg 408 #1 2a, 2b, 3b, 3c, 3d, 4, 6a, 8bc