Lesson 2

Maximum and Minimum Geometric Problems

Objectives: Solve maximum and minimum problems using derivatives
Investigate: How would you enclose a rectangular plot of land with a given amount of fencing in order to maximize the plot's area, or construct a box of greatest volume given a specific amount of material? These problems could be solved by trial and error; but, again, calculus provides a shortcut.

1. Find the dimensions of a rectangle if the perimeter is 28 cm and the area is a maximum. What is the maximum area?
2. A farmer wants to fence a rectangular enclosure for his horses and then divide it into thirds with fences parallel to one side of the rectangle. If he has 2000 m of fencing, find the area of the largest rectangle that can be enclosed.
3. A farmer wishes to fence part of a rectangular field along a straight river as shown in the following diagram. It is not necessary to fence the side bordering the river. The area of the rectangular field is to be $1800 \mathrm{~m}^{2}$ and the farmer wishes to use the least length of fencing material. What should the dimensions of the rectangular field be?

4. A rectangular box with two squares ends has a total surface area $150 \mathrm{~cm}^{2}$. Find the dimensions of the box if the volume is a maximum. What is the maximum volume?
5. An open box is to be made from a square piece of material, 30 cm on a side, by cutting equal squares from each corner and turning up the sides. Find the volume of the largest box that can be made this way.
6. A rectangular page is to contain $150 \mathrm{~cm}^{2}$ of printing. The margins at the top and bottom of the page are 3 cm . The margins at each side are 2 cm . What should the dimensions of the page be if the minimum amount of paper is used?

Homework: Page 188 - 1,2,5,6,7,8

