Lesson 3 More Maximum and Minimum Geometric Problems

Objectives: Solve Geometric problems

Skills: Find the distance between two points. $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

- Find the distance between:
 - P₁ (3,2) and P₂ (-2,10)
 - o P₁ (-1,-3) and P₂ (2,8)
- Do you need the square root to determine the max or min distance?
- 1. Find the points on the graph of $y = 9 x^2$ that are closest to the point (0, 5).

2. Find the point on the parabola $x = y^2$ that is closest to the point (0, 3)

3. Find the volume of the largest right circular cone that can be inscribed in a sphere of radius 30 cm.

4. Find the maximum area of a trapezoid inscribed in the function $y = 4 - x^2$ if the trapezoid has its longer base on the *x*-axis.

Homework:

- **1.** Find the point on the parabola $y = 6 x^2$ that is closest to the point (0, 3)
- **2.** If an isosceles triangle is inscribed in a circle of radius 4 cm, find the dimensions of the isosceles triangle of maximum area.
- **3.** Find the maximum volume of the largest right circular cone that can be inscribed in a sphere of radius 12 cm.
- **4.** Find the dimensions of the right circular cylinder of largest volume that can be inscribed in a sphere of radius 30 cm.
- **5.** Find the dimensions of a rectangle of maximum area inscribed in a circle of radius 6 cm.

Solutions

- 1. $(\sqrt{2\frac{1}{2}}, 3\frac{1}{2}), (-\sqrt{2\frac{1}{2}}, 3\frac{1}{2})$
- 2. The height of the triangle is 6 cm and the base is $4\sqrt{3}$ cm.

3. The maximum volume is
$$\frac{2048}{3}\pi \ cm^3$$

- 4. The radius of the right circular cylinder is $10\sqrt{6}$ cm and the height is $20\sqrt{3}$ cm.
- 5. The dimensions are $6\sqrt{2}$ cm by $6\sqrt{2}$ cm.

Page 190 – 11,12,14 HW – Applications of Derivatives.