Going to Infinity

Warmup:

1. Graph: $f(x)=3$.
a) Find $\lim _{x \rightarrow 4} f(x)$
b) Find $\lim _{x \rightarrow 10} f(x)$
c) Find $\lim _{x \rightarrow \infty} f(x)$
2. Graph: $f(x)=\frac{1}{x}$.
a) Find $\lim _{x \rightarrow 4} f(x)$
b) Find $\lim _{x \rightarrow 10} f(x)$

c) Find $\lim _{x \rightarrow \infty} f(x)$
3. Graph: $f(x)=\frac{2}{x}$.
a) Find $\lim _{x \rightarrow 4} f(x)$
b) Find $\lim _{x \rightarrow 10} f(x)$
c) Find $\lim _{x \rightarrow \infty} f(x)$
4. Graph: $f(x)=\frac{16}{x^{2}}$.
a) Find $\lim _{x \rightarrow 4} f(x)$
b) Find $\lim _{x \rightarrow 10} f(x)$
c) Find $\lim _{x \rightarrow \infty} f(x)$

We can conclude:

$$
\lim _{x \rightarrow \infty}\left(\frac{1}{r}\right)^{x}=\frac{1}{r^{x}}=0 \text {, if } r>1 \quad \text { AND } \quad \lim _{x \rightarrow \infty} r^{x}=0 \text {, if }|r|<1
$$

Infinite Sequences

Definitions:

An infinite sequence is the range of a function which has the set of natural number as its domain. If the terms of an infinite sequence approach a unique finite value, that sequence is called a convergent sequence. A sequence which does not converge is called divergent.

OBJECTIVE - find the value of an infinite convergent sequence.

1. a) Determine the first five terms of the sequence defined by the function

$$
t(n)=\frac{n}{n+1} \quad n \in N
$$

b) Plot the points of sequence.

c) What do you think $\lim _{n \rightarrow \infty} f(n)$ is? What is the math that can justify this?

As with functions, we can conclude:

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{r}\right)^{n}=\frac{1}{r^{n}}=0 \text {, if } r>1
$$

2. Find $\lim _{n \rightarrow \infty} \frac{2 n-3}{n}$
3. Find $\lim _{n \rightarrow \infty} \frac{n^{2}-n}{2 n^{2}+1}$
4. Find the limit if they exist
a) $\lim _{n \rightarrow \infty} \frac{3 n^{2}-5 n+8}{2 n^{2}+3 n-7}$
b) $\lim _{n \rightarrow \infty}(-1)^{n}$
c) $\lim _{n \rightarrow \infty} \frac{6 n^{3}+1}{3 n^{4}-n}$
d) $\lim _{n \rightarrow \infty}\left(\frac{1}{2}\right)^{n}$
