Solving Differential Equations

Warm up - finding derivatives, forward thinking.

- 1. Find the slope function (derivative) for any point on the given curves:
 - a) $y = x^2 + 2x 3$ b) $y = 3e^{2x}$ c) $y = \sin^2 x$
- 2. Find the slope of the above curve at the point where
 - a) x = 3 b) x = 3 c) $x = \frac{\pi}{4}$

Outcome: Find the equation for the anitderivative given initial conditions.

SKILL: Work backwards. Solve for C given a point on the function.

Examples:

1. A curve has a general slope described by 2x-5. If the original curve passes through the point (2,17), then what is the equation of the original curve?

- 2. Find the equation of each curve:
 - a) $f(x) = \frac{6}{x^2}$ = and passing through (-1, 6).

b) $f(x) = 3\sqrt{x}$ and passing through (4, 5)

c) f(x) = 4sin and passing through $\left(\frac{\pi}{2}, 6\right)$

2. Find the displacement function for an object moving on a horizontal line given the velocity function: $\frac{ds}{dt} = 2t$, with the initial condition: s = 3 when t = 0.

3. Find the curve y = F(x) that passes through (-1, 0) and satisfies $\frac{dy}{dx} = 6x^2 + 6x$

4. For the graph G at every point $\frac{dy}{dx} = e^{-x}$ Find the equation of a graph parallel to G that passes through the origin.