1 + 0.50(1) = 1.5 1.5 + 1.50(0.50)Derivative of the Exponential Function With Base $\frac{1}{6}$ $\frac{1}{2}$

Objectives: Find the derivative of exponential functions.

Warm up: Estimations of e

If you began walking at 1 km/h and then doubled your speed over a one-minute interval, you would be walking at 2 km/h. But suppose you increased your speed by 50% every half-minute. How fast would you be walking at the end of one minute?

Suppose you increased your speed by 25% every quarter-minute. What would your speed be at the end of one minute? Remember, your speed would be 1.25 times as fast every quarter-minute. Complete the chart below

Speed (km/h)	1.00	1.25	1.56	1.55	۵.4	1414.
Time Elapsed (s)	0	15	30	45	60	-

1.00+1.00(0.25) 1.25+1.25(0.25)

Generate an expression to find your speed at the end of one minute.

Suppose you increased your speed by $\frac{1}{10}$ for every tenth of a minute. What would your speed be at the end of one minute?

Complete the table for each increase in speed for and equal portion of a minute.

Increase in speed	Speed at the end of 1 minute		
$\frac{1}{10} (1 + \frac{1}{10})^{10}$	2.59374246		
$\frac{1}{1000} \left(1 + \frac{1}{1000} \right)^{1000}$	2.7169239		
1 100000 (1 + 100 000)	2.718268237.		
1 10000000	2.71828169		
1 1000000000	2.718281827		

million one billion

$$C = 2.71928193...$$
Derivatives of $y = e^{x}$

(5, 143.4.)

e can be defined as: $e = \lim_{n \to \infty} \left[1 + \frac{1}{n} \right]^n$

y= (2.71828...)

Investigate:

Why is e such a special number?

Use your calculator to sketch $y = e^x$. Find the values of e^x at x = 1,3,5

Find the derivative of $y = e^x$ at x = 1,3,5 using your calculator.

State the value of $\frac{dy}{dx}e^x$

$$f(x) = f'(x)$$

2.0 Derive Base e.2018

3. Sketch the graph of $f(x) = e^{-x^2}$

