Derivative of the Exponential Function With Base e

Objectives: Find the derivative of exponential functions.
Warm up: Estimations of e
If you began walking at $1 \mathrm{~km} / \mathrm{h}$ and then doubled your speed over a one-minute interval, you would be walking at $2 \mathrm{~km} / \mathrm{h}$. But suppose you increased your speed by 50% every half-minute. How fast would you be walking at the end of one minute?

Suppose you increased your speed by 25% every quarter-minute. What would your speed be at the end of one minute? Remember, your speed would be 1.25 times as fast every quarter-minute. Complete the chart below

Time Elapsed (s)	0	15	30	45	60
Speed (km/h)					

Generate an expression to find your speed at the end of one minute.

Suppose you increased your speed by $\frac{1}{10}$ for every tenth of a minute. What would your speed be at the end of one minute?

Complete the table for each increase in speed for and equal portion of a minute.

Increase in speed	Speed at the end of 1 minute
$\frac{1}{10}$	
$\frac{1}{1000}$	
$\frac{1}{100000}$	
$\frac{1}{10000000}$	
$\frac{1}{1000000000}$	

Derivatives of $y=e^{x}$

\boldsymbol{e} can be defined as: $e=\lim _{n \rightarrow \infty}\left[1+\frac{1}{n}\right]^{n}$

Investigate:
Why is e such a special number?

Use your calculator to sketch $y=e^{x}$.
Find the values of e^{x} at $x=1,3,5$

Find the derivative of $y=e^{x}$ at $x=1,3,5$ using your calculator.

State the value of $\frac{d y}{d x} e^{x}$

$y=2^{x}$ and $y=e^{x}$

Chain Rule: $f(x)=e^{u} \quad$ then $\quad f^{\prime}(x)=e^{u} \cdot \frac{d u}{d x}$

1. Differentiate
a) $y=x^{3} e^{x}$
b) $y=e^{x^{2}}$
c) $y=x^{5} e^{x^{5}}$
2. Find the absolute maximum value of the function $f(x)=x e^{-x}$
3. Sketch the graph of $f(x)=e^{-x^{2}}$
