Solving Differential Equations

Warm up - finding derivatives, forward thinking.

1. Find the slope function (derivative) for any point on the given curves:

a)
$$y = x^2 + 2x - 3$$

b) $y = 3e^{2x}$
c) $y = \sin^2 x$
dy $= 2\sin^2 x$

2. Find the slope of the above curve at the point where

a)
$$x = 3$$

b) $x = 3$
c) $x = \frac{\pi}{4}$
 $f'(3) = 2(3) + 2$
 $f'(3) = 6e^{6}$
 $f'(x) = 5 \cdot n(3 \cdot \frac{\pi}{4})$
 $f'(3) = 6e^{6}$
 $f'(x) = 5 \cdot n(3 \cdot \frac{\pi}{4})$
 $f'(3) = 6e^{6}$

Outcome: Find the equation for the anitderivative given initial conditions.

SKILL: Work backwards. Solve for C given a point on the function.

Examples:

1. A curve has a general slope described by 2x-5. If the original curve passes through the

point (2,17), then what is the equation of the original curve?

F(x) =
$$\frac{3x}{3^2} - \frac{5x}{3^2} + c$$

F(x) = $\frac{3x}{3^2} - \frac{5x}{3^2} + c$

17 = $\frac{3x}{3^2} - \frac{5x}{3^2} + c$

2. Find the equation of each curve:
a) $f(x) = \frac{6}{5^2} = \text{and passing through } (-1, 6)$.

F(x) = $\frac{6x}{3} + c$

F(x) = $\frac{6x}{3} + c$

F(x) = $\frac{3x}{3} + c$

F(x)

2.0 Find constant

$$y = 4\sin x$$

$$c) f(x) = 4\sin \text{ and passing through} \left(\frac{\pi}{2}, 6\right)$$

$$F(x) = -4\cos x + C$$

$$6 = -4\cos \pi + C$$

$$6 = -4\cos x + C$$

$$6 = -4\cos x + C$$

$$C = 6$$

$$F(x) = -4\cos x + 6$$

2. Find the displacement function for an object moving on a horizontal line given the velocity function: $\frac{ds}{dt} = 2t$, with the initial condition: s = 3 when t = 0.

$$5'(t): at$$
 $5(t): t^{2}+c$
 $5(t): at^{2}$
 $5(t): t^{2}+c$
 $5(t): t^{2}+c$

3. Find the curve y = F(x) that passes through (-1, 0) and satisfies $\frac{dy}{dx} = 6x^2 + 6x$

$$F(x) = 6x^{3} + 6x^{2} + c$$

$$P(-1,0)$$

$$0 = 2(-1)^{3} + 3(-1)^{2} + c$$

$$0 = 2(-1)^{3} + 3(-1)$$

4. For the graph G at every point $\frac{dy}{dx} = e^{-x}$ Find the equation of a graph parallel to G that passes through the origin.

F(x) =
$$\frac{e^{-x}}{-1}$$

$$y = -e^{-x} + c$$

$$0 = -e^{(-0)} + c$$

$$0 = -(e^{0}) + c$$

Homework: Page 411 #1, 2, 3, 4abc, 5, 6