The Limits of Trigonometric Expressions

Outcomes: Find the limits of sine and cosine and simple modifications to them.
Warm up: Sketch the curve of sine
Sketch the curve of cosine

Investigate: Look at the left- and right-hand limits of $\sin \theta$ and $\cos \theta$ as $x \rightarrow 0$
Since we know that sine and cosine are continuous graphs state the value of $\lim _{\theta \rightarrow 0} \sin \theta \quad$ and $\quad \lim _{\theta \rightarrow 0} \cos \theta$.

Examples: Evaluate the following limits
a) $\lim _{\theta \rightarrow \pi} \frac{\sin \theta}{2}$
b) $\lim _{x \rightarrow 0}(\sin x+x)$.
c) $\lim _{x \rightarrow \pi}(\sin x+\cos x)$
d) $\lim _{x \rightarrow \frac{\pi}{2}} \frac{\sin x+1}{\cos x+1}$
e) $\lim _{x \rightarrow \frac{3 \pi}{2}} \frac{\cos x}{2 x}$
f) $\lim _{x \rightarrow 0} \frac{\cos 2 x}{3 \cos 3 x}$

Investigate: Some limits which will be very important to trigonometric functions are:

$$
\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta} \text { or } \lim _{\theta \rightarrow 0} \frac{\theta}{\sin \theta} \text { and } \lim _{\theta \rightarrow 0} \frac{\cos \theta-1}{\theta}
$$

These limits are necessary in order to find the derivatives of trigonometric functions.

Graph: $y=\frac{\sin \theta}{\theta} \quad$ What does the graph indicate the $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}$ is equal to?

Graph: $y=\frac{\cos \theta-1}{\theta}$ What does the graph indicate the $\lim _{\theta \rightarrow 0} \frac{\cos \theta-1}{\theta}$ is equal to?

Examples: Find the following limits
a) $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{2 \theta}$
b) $\lim _{\theta \rightarrow 0} \frac{\sin 3 \theta}{\theta}$
c) $\lim _{\theta \rightarrow 0} \frac{\sin ^{2} \theta}{\theta}$
d) $\lim _{x \rightarrow 0} x \sec x$.
e) $\lim _{x \rightarrow 0} \frac{\tan x}{\sin x}$.
f) $\lim _{x \rightarrow 0} \frac{\sin 4 x}{\sin 3 x}$
g) $\lim _{\theta \rightarrow \frac{\pi}{2}} \frac{\sin \theta}{2 \theta}$
h) $\lim _{x \rightarrow 0} \frac{\sin ^{2} 3 x}{\sin ^{2} 4 x}$
i) $\lim _{x \rightarrow \frac{\pi}{4}} \frac{\cos 2 x}{\cos x-\sin x}$
j) $\lim _{x \rightarrow 0} \frac{\tan x}{\tan 2 x}$

Homework: Page 306: 1,2,7,9, 11,12,13,15,16,17,18,19,20,21,23,27,31,33

