The Natural Logarithm

Objectives: Use natural logarithms – simplify, change forms, solve equations.

Warm up: Graph the equation $y = e^x$ and $y = \ln x$

 $\log_e x = \ln x$. This is called the natural logarithm.

- 1. Simplify the following:a) $\ln e^x$ b) $e^{\ln x}$ c) $\ln e$ d) $\ln 1$
- 2. Solve for *x* in the following: a) $\ln x = 5$ b) $e^x = 20.086$ c) $e^{3-2x} = 4$
- 3. Sketch the graphs of the following functions. a) $y = -\ln x$ b) $y = \ln(-x)$
- 4. Express $\frac{2}{3} \ln x 4 \ln y + \ln(x+1)$ as a single logarithm.
- 5. Find the domain of the function $f(x) = \ln(16 x^2)$
- 6. Find $\lim_{x\to 4^-} \ln(16 x^2)$

Homework: Page 375 #3,4,5,6,9(a,b),10.

The Derivative of Logarithmic Functions

Objectives: Find Derivatives of Logarithmic functions.

Use the exponential form and implicit differentiation to find the derivative of $y = \ln x$ " $y = \ln x$ is the same as $y = \log_e x$ is the same as $e^y = x$ "

SUMMARY:
$$y = \ln(u) \dots \frac{dy}{dx} =$$

Examples:

- 1. Differentiate
 - a) $y = x^2 \ln x$ b) $y = \ln(x^2 + 1)$
 - c) $y = (\ln x)^3$ d) $y = x \ln x$

e)
$$y = \ln \frac{x}{\sqrt{x+1}}$$
 f) $y = \ln |x|$

2. Find the derivative of $y = \log_3 x$

3. Develop a formula for finding $\frac{d}{dx}\log_b x$ using what you discovered above.

4. Find
$$f'(x)$$
 if $f(x) = \log(x^2 + x)$

Homework: Page 383 #1(a,b,c,d,e,g,h,j,k,l) 3, 5(a,b,d)