The Natural Logarithm

Objectives: Use natural logarithms - simplify, change forms, solve equations.
Warm up: Graph the equation $y=e^{x}$ and $y=\ln x$
$\log _{e} x=\ln x$. This is called the natural logarithm.

1. Simplify the following:
a) $\ln e^{x}$
b) $e^{\ln x}$
c) $\ln e$
d) $\ln 1$
2. Solve for x in the following:
a) $\ln x=5$
b) $e^{x}=20.086$
c) $e^{3-2 x}=4$
3. Sketch the graphs of the following functions.
a) $y=-\ln x$
b) $y=\ln (-x)$
4. Express $\frac{2}{3} \ln x-4 \ln y+\ln (x+1)$ as a single logarithm.
5. Find the domain of the function $f(x)=\ln \left(16-x^{2}\right)$
6. Find $\lim _{x \rightarrow 4^{-}} \ln \left(16-x^{2}\right)$

The Derivative of Logarithmic Functions

Objectives: Find Derivatives of Logarithmic functions.
Use the exponential form and implicit differentiation to find the derivative of $y=\ln x$ $" y=\ln x$ is the same as $y=\log _{e} x$ is the same as $e^{y}=x "$

SUMMARY: $y=\ln (u) \ldots \frac{d y}{d x}=$

Examples:

1. Differentiate
a) $y=x^{2} \ln x$
b) $y=\ln \left(x^{2}+1\right)$
c) $y=(\ln x)^{3}$
d) $y=x \ln x$
e) $y=\ln \frac{x}{\sqrt{x+1}}$
f) $y=\ln |x|$
2. Find the derivative of $y=\log _{3} x$
3. Develop a formula for finding $\frac{d}{d x} \log _{b} x$ using what you discovered above.
4. Find $f^{\prime}(x)$ if $f(x)=\log \left(x^{2}+x\right)$
