Applications of Derivatives - Velocity and Acceleration

- o displacement as a function of time = s(t)
- o velocity: $v(t) = \frac{d}{dt}(s) = \frac{ds}{dt} = s'(t)$
- o acceleration = $\frac{d}{dt}(v) = \frac{dv}{dt} = \frac{d}{dt}(\frac{d}{dt}(s)) = s''(t)$
- 1. The position in centimeters, relative to the origin, at any time t in seconds of an object moving along the x-axis is given by $s(t) = -2t^2 + 8t + 1$ $t \ge 0$.

- a) What is the position of the object at time t = 4?
- b) What is the instantaneous velocity at t = 4?
- c) Is the object moving away from or toward the origin (zero) at time t = 4? Justify.

$$5'(t) = -4t + 8$$

$$5'(4) = -4(4) + 8$$

$$= -8 \text{ cm/s}$$

$$0R 8 \text{ cm/s} 1eft$$

$$5'(4) = -4(4) + 8$$

From right of origin, moving left: moving towards origin.

- 2. The position in metres, relative to the origin, at any time t in seconds of an object moving along the x-axis is given by: $s(t) = 3t 2t^3$
 - a) Determine the velocity at time of t = 3 s.
 - b) Determine the acceleration at time of time of t = 3 s.
 - c) Is the object increasing or decreasing its velocity at time of t = 3 s?

3. When will the velocity of a car traveling along a straight road be 100 km/h if its position in meters at time seconds is $s(t) = 5t + 2t^2$?

$$V = 27.78 \, \text{m/s}$$

$$5(t) = 5t + 2t^{2}$$

 $5'(t) = 5 + 4t$
 $27.78 = 5 + 4t$
 $t = 5.7$

- 4. A bicycle rider traveling along a straight road applies the brakes, and the rider's position in metres at any time t seconds is given by $s(t) = 3t 0.75t^2$.
 - a) What is the rider's initial velocity?
 - b) How long does it take the rider to stop?

$$\frac{d}{dt} \left[s(t) = 3t - 0.75t^{2} \right]$$

$$\frac{ds}{dt} = s'(t) = 3 - 1.5t$$

$$A) V(0) = 3 - 1.5(0)$$

$$V(0) = 3 - 1.5t$$

$$b) 0 = 3 - 1.5t$$

$$t = 2$$

5. Find the acceleration at t = 1, if time is measured in seconds and position in meters, for $s(t) = \left(4t^2 + 5\right)^3$

$$s(t) = (4t^{2} + 5)^{3}$$

$$s'(t) = \frac{ds}{dt} = 3(4t^{3} + 5)^{3}(8t)$$

$$\frac{d}{dt} [V(t) = 24t(4t^{2} + 5)^{2}]$$

$$\alpha(t) = V'(t) = S''(t) = \frac{ds}{dt^{2}}$$

$$A(t) = V'(t) = S''(t) = \frac{cls}{clt^2}$$

$$f = 24t \qquad g = (4t^2 + 5)^2$$

$$f' = 24 \qquad g' = 2(4t^2 + 5)(8t)$$

$$g' = 16t(4t^2 + 5)$$

6. A snowmobiler traveling down a narrow bush road comes over a hill and sees another machine stalled 15 m directly ahead. The brakes are applied immediately and the snowmobiler's position is determined by $s(t) = 12t - t^3$, $t \ge 0$ where t is in seconds and s(t) in meters. Will a crash occur? Justify.

$$5(t) = 12t - t^{3}$$
 (velocity = 0)
 $5'(t) = 12 - 3t^{2}$ find to then $5(t) = 12 - 3t^{2}$ when $5(t) = 12 - 3t^{2}$ when $5(t) = 12 - 3t^{2}$ when $5(t) = 12 - 3t^{2}$ and $5(t) = 12 - 3t^{2}$ when $5(t) = 12 - 3t^{2}$ and $5(t) = 12 - 3t^{2}$