Definite Integrals \& Area Between Curves

- Use integrals to determine area below a curve (between function and the x-axis).
- Use integrals to determine area between curves.

Warm up: \quad Given the curve $f(x)=4 x+3$
Find the area, $A=\left(\frac{b_{1}+b_{2}}{2}\right)(h)$, of the trapezoid
formed between $f(x)$ and the x-axis, from
a) $x=0$ to $x=1$

b) $x=0$ to $x=5$
c) $x=1$ to $x=5$

Investigate:

Find the function $F(x)=\int(4 x+3) d x$ and evaluate $F(5)-F(1)$.

Summary:
The area under the curve (between the curve and the x -axis) on the interval $[\mathrm{a}, \mathrm{b}]$ can be represented by the Fundamental Theorem of Calculus:

$$
A=\int_{a}^{b} f(x) d x=\left.F(x)\right|_{a} ^{b}=F(b)-F(a)
$$

When we find area we are also evaluating definite integrals.

Examples - Page 455: 1kl, 2c. Page 461 : 1k

1. Find the area under the curve from a to b.
k) $y=x^{2}-x+2$, from -2 to 1 .

l) $y=2 e^{-2 x}$, from 0 to 1 .

2. Find the area below the curve and above the x-axis:
c) $y=x^{2}-x^{3}$, from -2 to 1

Page 461 :

1. Sketch the region bounded by the given curves and find the area of the region.
k) $y^{2}=4 x$ and $x^{2}=4 y$

