Derivatives of the Primary Trigonometric Ratios

Given: $\lim_{x \to 0} \frac{\cos x - 1}{x} = 0$ and $\lim_{x \to 0} \frac{\sin x}{x} = 1$

Outcomes: Find derivatives of sine and cosine and simple modifications to them.

Recall: the derivative of a function was the slope of the tangent to a curve and that

 $\frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$. This is the definition of derivative using the concept of first principles.

- 1. Determine the derivative of y = sin(x)
 - Using first principles.

• Given the curve of y = sin(x). Use the concept of tangent line slopes to graphically find the derivative of y = sin(x).

- 2. Determine the derivative of y = cos(x).
 - Given the curve of y = cos(x). Use the concept of tangent line slopes to graphically find the derivative of y = cos(x).

If $y = \sin u$ or $y = \cos u$ is a composition of two functions, use the chain rule:

•
$$\frac{d}{dx}\sin u = \cos u \times \frac{du}{dx}$$
 • $\frac{d}{dx}\cos u = -\sin u \times \frac{du}{dx}$

Examples:

1. Find the derivative of the following

- a) $y = \sin 2x$ b) $y = \sin(x^2 - 1)$ c) $y = x \sin x$ d) $y = \frac{x}{\sin x}$ e) $y = \cos^2 x$ f) $y = \cos(ax+b)$
- g) $y = \cos(\sin x)$ h) Differentiate implicitly $\sin x + \sin y = 1$

2. Find the equation of the tangent line to $y = \frac{\sin x}{\cos 2x}$ at $x = \frac{\pi}{6}$

Homework:

Calculus, A First Course. McGraw-Hill Ryerson Limited, 1989. Pg 313# 1 (second column), 2, 3(a,e), 4(a), 5(b), 11(a,c)

B 1. Find the derivative of y with respect to x in each of the following. (a) $y = \cos(-4x)$ (b) $y = \sin(3x + 2\pi)$ (c) $y = 4\sin(-2x^2 - 3)$ (d) $y = -\frac{1}{2}\cos(4 + 2x)$ (e) $y = \sin x^2$ (f) $y = -\cos x^2$ (g) $y = \sin^{-2}(x^3)$ (h) $y = \cos(x^2 - 2)^2$ (i) $y = 3\sin^4(2 - x)^{-1}$ (j) $y = x\cos x$ (k) $y = \frac{x}{\sin x}$ (l) $y = \frac{\sin x}{1 + \cos x}$ (m) $y = (1 + \cos^2 x)^6$ (n) $y = \sin \frac{1}{x}$ (o) $y = \sin(\cos x)$ (p) $y = \cos^3(\sin x)$ (q) $y = x\cos\frac{1}{x}$ (r) $y = \frac{\sin^2 x}{\cos x}$ (s) $y = \frac{1 + \sin x}{1 - \sin 2x}$ (t) $y = \sin^3 x + \cos^3 x$ (u) $y = \cos^2(\frac{1 - \sqrt{x}}{1 + \sqrt{x}})$

- 2. Find $\frac{dy}{dx}$ in each of the following.
 - (a) $\sin y = \cos 2x$ (b) $x \cos y = \sin(x + y)$
 - (c) $\sin y + y = \cos x + x$ (d) $\sin(\cos x) = \cos(\sin y)$
 - (e) $\sin x \cos y + \cos x \sin y = 1$
 - (f) $\sin x + \cos 2x = 2xy$
- 3. Find an equation of the tangent line to the given curve at the given point.

(a)
$$y = 2 \sin x$$
 at $\left(\frac{\pi}{6}, 1\right)$ (b) $y = \frac{\sin x}{\cos x}$ at $\left(\frac{\pi}{4}, 1\right)$
(c) $y = \frac{1}{\cos x} - 2 \cos x$ at $\left(\frac{\pi}{3}, 1\right)$
(d) $y = \frac{\cos^2 x}{\sin^2 x}$ at $\left(\frac{\pi}{4}, 1\right)$
(e) $y = \sin x + \cos 2x$ at $\left(\frac{\pi}{6}, 1\right)$
(f) $y = \cos(\cos x)$ at $x = \frac{\pi}{2}$

- Find the critical numbers, the intervals of increase and decrease, and any maximum or minimum values.
 - (a) $y = \sin^2 x, -\pi \le x \le \pi$
 - (b) $y = \cos x \sin x, -\pi \le x \le \pi$
- 5. Determine the concavity and find the points of inflection.
 - (a) $y = 2 \cos x + \sin 2x$, $0 \le x \le 2\pi$
 - (b) $y = 4 \sin^2 x 1, -\pi \le x \le \pi$
- 11. Find $\frac{dy}{dx}$ in each of the following.
 - (a) $y = \frac{1}{\sin(x \sin x)}$ (b) $y = \sqrt{\sin\sqrt{x}}$ (c) $y = \sqrt[3]{x \cos x}$ (d) $y = \cos^3(\cos x) + \sin^2(\cos x)$ (e) $y = \sqrt{\cos(\sin^2 x)}$