Limits at Infinity

Skill: Common factor polynomial expressions.

Outcome: Use limits at infinity to sketch curves that do not have horizontal asymptotes (polynomial functions).

Warm up: Find the $\lim _{x \rightarrow \infty} x^{2} \quad \lim _{x \rightarrow-\infty} x^{2}$

Investigate: Use the limits to help define the curve $y=x^{2}$

We can us intuition to recognize the product: infinity x infinity $=$ infinity.
What about subtracting infinity: What is infinity cubed less infinity squared?
Skill - make sum/difference of infinity 'products' of infinity using factoring skills.
Examples:
Evaluate the following limits

$$
\lim _{x \rightarrow \infty}\left(x^{4}-x\right) \quad \lim _{x \rightarrow \infty}\left(x^{3}-2 x+1\right) \quad \lim _{x \rightarrow \infty}\left(x^{4}-x^{5}\right)
$$

Sketch the graph of the curve $y=(x-3)^{2}(x+2)(1-x)$ by finding its intercepts and its limits.

Odd and Even Functions

Even Functions are symmetric about the \mathbf{y} - axis.
An even function is a function such that $f(x)=f(-x)$
An examples of an even function is $y=x^{2}$
Sketch the curve of $y=x^{2}$

Odd functions are symmetric about the origin; x values are rotated 180° about the center to get the negative x-values.

An odd function is a function such that $f(-x)=-f(x)$
An example of an odd function is $f(x)=x^{3}$
Sketch the curve of $f(x)=x^{3}$

Examples: Justify algebraically why function is even or odd, or neither. Sketch the functions too.
a) $f(x)=x^{6} \quad$ is even.
b) $g(x)=x^{3}+\frac{1}{x}$ is odd.
c) $h(x)=3 x^{2}+2 x-8$ is neither.

