Trigonometric Problem Solving

Objectives: Solve applications of trigonometric function questions
Problem Solving:

- Draw a diagram, label things that change with variables.
- Match the number of variables to the number of rates in the problem.
- Determine which trig ratio to work with - you may have two choices, select the easiest one to derive.
- Put rates into the question - it's usually time: $d / d t$
- Solve for the moment - we usually need to solve for one piece of the puzzle on our own.

1. The beam of a lighthouse sweeps across the path of a boat cruising at a speed of 30 km / h parallel to the shoreline. If the boat is 2 km from the shore and stays within the beam of the light, at what rate is the beam revolving (in rad/h) when the boat has sailed 4 km from a point opposite the lighthouse.
2. Two sides of a triangle have lengths of 15 m and 20 m . The angle between them is increasing at $\frac{\pi}{90} \mathrm{rad} / \mathrm{s}$. How fast is the length of the third side changing when the angle between the sides is $\frac{\pi}{3}$?
3. The angle of elevation of the sun is decreasing at $\frac{1}{3} \mathrm{rad} / \mathrm{h}$. How fast is the shadow cast by a tree 10 m tall lengthening when the angle of elevation of the sun is $\frac{\pi}{3}$ rad?
4. 4. A ladder 8 m long is resting against the vertical wall of a house. If the top of the ladder is sliding down the wall and the angle the ladder makes with the ground is decreasing at a rate $\frac{1}{4}$ of rad/s, how fast is the ladder sliding down the wall, when the angle is $\frac{\pi}{4} \mathrm{rad}$?
1. Find the maximum perimeter of a right triangle with hypotenuse 20 cm .
2. An airplane, in level flight, is approaching the spot where you are standing. The speed of the airplane is $100 \mathrm{~m} / \mathrm{s}$ and it is flying at an altitude of 1000 m . What is the rate of change of the angle of elevation q when the distance from where you are standing to a point directly below the plane is 2000 m ?

3. A video camera at ground level is filming the liftoff of a hot-air balloon that is rising vertically according to the position equation $h=2 t$, where h is in metres and t is in seconds. If the camera is 100 m from the launch site, find the rate of change of the angle of elevation of the camera 5 s after liftoff.

Page 325 \# 1a, 2b, 8, 10, 11, 12, 14

