MATH 31
Applications of Derivatives - Related Motion

1. Sand pouring from a conveyor belt forms a conical pile, the radius of which is $\frac{3}{4}$ of the height. The sand is piling up at a constant rate of $0.5 \mathrm{~m}^{3} / \mathrm{min}$. At what rate is the height of the pile growing 3 minutes after the pouring starts?

$$
\begin{array}{ll}
\frac{d V}{d t}=0.5 \mathrm{~m}^{3} / \mathrm{min} & V=\frac{1}{3} \pi r^{2} h \text { and } r=\frac{3}{4} h \\
\frac{d h}{d t}=? & V=\frac{1}{3} \pi\left(-\frac{3}{4} h\right)^{2}(h) \\
& V=\frac{3 \pi}{16} h^{3}
\end{array}
$$

"Rates"
(1) $0.5=\frac{9 \pi}{16}\left(\frac{4}{\pi^{2 / 3}}\right) \frac{d t}{d t}$

$$
\frac{2}{9 \pi^{1 / 3}}=\frac{d 1}{d t}=0.15 \mathrm{~m} / \mathrm{min}
$$

... h when $t=3$ minutes

$$
0.5=\frac{9 \pi}{16}\left(\frac{2}{\sqrt[3]{\pi}}\right)^{2} \frac{d h}{d t}
$$

$$
\begin{aligned}
& V=3 \times 0.5 \mathrm{~m}^{2} / \mathrm{mim} \\
& V=1.5 m^{3} \\
& 1.5=\frac{3 \pi}{16} h^{3} \\
& h^{3}=\frac{8}{7} \\
& h=\frac{2}{\sqrt[3]{7}}
\end{aligned}
$$

2. When a small pebble is dropped in a pool of still water, it produces a circular wave that travels outward at a constant speed of $15 \mathrm{~cm} / \mathrm{s}$. At what rate is the area inside the wave increasing when
a) the area is $400 \pi \mathrm{~cm}^{2}$?
b) 4 s have elapsed?

$$
\begin{align*}
& A=\pi r^{2} \\
& \text { (1) } \frac{d A}{d t}=2 \pi r \frac{d r}{d t} \\
& \text { 000 } 400 \pi=\pi r^{2} \\
& 400=r^{2} \\
& r=20 \text { (1) } \\
& \frac{d A}{d t}=2 \pi r \frac{d r}{d t} \\
& r=60 \mathrm{~cm} \mathrm{c} \\
& \frac{d A}{d t}=2 \pi(20)(15) \\
& =600 \pi \mathrm{~cm}^{2} / \mathrm{s} \tag{1}\\
& A=\pi r^{2} \ldots r=4(15) \\
& \frac{d A}{d t}=2 \pi(60)(15) \\
& =1800 \pi \mathrm{~cm}^{2} / \mathrm{s}
\end{align*}
$$

3. A lady, 5 feet tall, is walking away from a lamppost that is 25 feet high. The lady is 15 feet from the lamppost and walking at a rate of 2.5 feet/second. At what rate is her shadow increasing? [Round your answer to the nearest tenth.]

$$
\begin{aligned}
\frac{d y}{d t} & =4 \frac{d x}{d t} \\
2.5 & =4 \frac{d x}{d t} \\
\frac{d x}{d t} & =\frac{5}{8} 02 \quad 0.6 f t / \mathrm{s}
\end{aligned}
$$

$$
\frac{d v}{d t}=-\frac{50 \mathrm{~cm}^{3}}{m m}
$$

$$
r=1500 \mathrm{~cm}
$$

$$
\|=\frac{4}{3} \pi r^{3}
$$

$$
A=4 \pi r^{2}
$$

(1) $\frac{d V}{d t}=4 \pi r^{2} \frac{d r}{d t}$
$-50=4 \pi(1500)^{2} \frac{d r}{d t}$
(3) $\frac{d A}{d t}=0 \pi r \frac{d r}{d t}=r=1500$
(1) $\frac{d r}{d t}=\frac{-50}{4 \pi(150)^{2}}$

$$
\begin{align*}
\text { (1) } \frac{d A}{d t} & =8 \pi(1500)\left(\frac{-50}{4 \pi(1500)^{2}}\right) \tag{1}\\
\frac{d A}{d t} & =\frac{-100}{1500}=-\frac{1}{15} \mathrm{~cm}^{2} / \mathrm{min} \\
\text { (1) } \frac{d A}{d t} & =-0.067 \mathrm{~cm}^{2} / \mathrm{min}
\end{align*}
$$

surface area, S, shrinking when the radius is 15 meters? $V=\frac{4}{3} \pi r^{3}$ and $S A=4 \pi r^{2}$

