Differential Equations & Area Exam

Find the indefinite integral.

a)
$$\int 2x^{3} dx$$

= $\partial (\frac{1}{4}x^{4}) + c$
= $\frac{1}{2}x^{4} + c$
= $\frac{1}{3}x^{3} + 3e^{-x}(\frac{1}{-1}) + 4(-\cos x) + c$
= $\frac{1}{3}x^{3} - 3e^{-x} - 4\cos x + c$
= $\frac{1}{3}x^{3} - \frac{3}{e^{x}} - 4\cos x + c$

2. Determine the integral for the existing conditions.

a)
$$\int (2x+1)dx \text{ and } y = 8 \text{ when } x = -2.$$

b) Suppose $F'(x) = 3\sqrt{x} - 6 \text{ and th}$
is on $y = F(x)$. Find $F(x)$.

$$f(x) = \int 3(x)^{1/2} - 6$$

$$g = x^2 + x + C$$

$$g = (-2)^2 + (-2) + C$$

$$g = (-2)^2 + (-2) + C$$

$$g = 4 - 2 + C$$

$$G = 6$$

$$f(x) = 2x^{3/2} - 6x + C$$

$$g = 2(4)^{3/2} - 6(4) + C$$

$$g = 2(4)^{3/2} - 6(4) + C$$

$$g = 2(4)^{3/2} - 6x + 10$$

$$g = 2(4)^{3/2} - 6x + 10$$

$$g = 2(x^{3/2} - 6x + 10)$$

$$g = \frac{2(-2) + 1}{4} + C$$

$$g = \frac{2}{4} + C + C = \frac{2}{3}$$

$$F(x) = \frac{1}{4} (2x + 1)^2 + \frac{23}{5}$$

b) Suppose $F'(x) = 3\sqrt{x} - 6$ and the point (4,2) Find F(x).

$$F(x) = \int 3(x)^{1/2} - 6$$

= $3\left(\frac{2}{3}x\right)^{3/2} - 6x + 6$
$$F(x) = 2x^{3/2} - 6x + 6$$

$$2 = 2(4)^{3/2} - 6(4) + 6$$

$$2 = 16 - 24 + 6$$

$$10 = 6$$

$$(x) = 2x^{3/2} - 6x + 10$$

$$= 3\left(\frac{2}{3}\chi^{3/2}\right) - 6\chi +$$

6.3. Determine the following indefinite integrals.

a)
$$\int (6x^{2}(4x^{3}+9)^{0}) dx$$

b) $\int (e^{\cos x} \sin x) dx$
 $U = 4x^{3} + 9$
 $\int (2x^{2} + 2x^{2} + 2x^{2}) dx = \frac{du}{1dx^{2}}$
 $\int (2x^{2}(4x^{3}+9)^{9}) dx = \int \frac{1}{2}u^{9} du$
 $= \frac{1}{2}(\frac{1}{70}u^{10}) + c$
 $= \frac{1}{20}(\frac{4x^{3}+9}{10})^{10}(\frac{1}{1dx^{2}}) = \frac{1}{20}(\frac{1}{1dx^{2}})^{10} + c$
 $= \frac{1}{20}(\frac{4x^{3}+9}{10})^{10} + c$
 $= \frac{1}{20}(\frac{4x^{3}+9}{10})^{10} + c$
 $= \frac{1}{20}(\frac{4x^{3}+9}{10})^{10} + c$
 $= \frac{1}{20}(\frac{1}{1dx^{2}}) = \frac{1}{20}(\frac{1}{1dx^{2}})^{10} + c$
 $= \frac{1}{20}(\frac{1}{1dx^{2}}) = \frac{1}{20}(\frac{1}{1dx^{2}})^{10} + c$
 $= -e^{10} + c - p = -e^{10} + c$
 $\int e^{10} (1 + 2x^{2})^{10} + c$
 $= -e^{10} + c - p = -e^{10} + c$
 $= -e^{10} + c$
 $= -e^{10} + c$
 $= -e^{10} + c$

4. A pebble is tossed upward at 25 m/s from the edge of a bridge 46 m above the river below. How many seconds elapse between the toss and the splash? Round your answer off to the nearest tenth of a second.

$$\begin{aligned} \alpha &= -9.8 \text{ m/s}^2 \\ V &= \int -9.8 \text{ dt} \\ V &= -9.8 \text{ t} + c_{oov} \quad V &= 25, \quad t = 0 \\ \therefore \quad V &= -9.8 \text{ t} + 25 \\ s &= \int -9.8 \text{ t} + 25 \text{ dt} \\ s &= -4.9 \text{ t}^2 + 25 \text{ t} + c_{ov} \quad s = 46, \quad t = 0 \\ \therefore \quad S &= -4.9 \text{ t}^2 + 25 \text{ t} + 46 \\ t &= ? \quad \text{when } s = 0 \\ 0 &= -4.9 \text{ t}^2 + 25 \text{ t} + 46 \\ t &= -25 \text{ t} \sqrt{1526.6} \\ t &= -9.8 \end{aligned}$$

5. Sketch and find the area of the region

bounded by the curve
$$y = 8 - \frac{1}{2}x^2$$
 and the x-axis.

$$0 = 9 - \frac{1}{2}x^2$$

$$\frac{1}{2}x^2 = 9$$

$$y(^2 = 1/6)$$

$$x = \pm 4$$

$$A = \int 9 - \frac{1}{2}x^2 - c(x)$$

$$-4$$

$$= \left[8x - \frac{1}{6}x^3 \right]^{-4}$$

$$= \left[8(4) - \frac{1}{6}(4)^3 \right] - \left[8(-4) - \frac{1}{6}(-4)^3 \right]$$

$$= \left[\frac{32}{3} - \frac{32}{3} \right]^{-1} \left[-32 + \frac{32}{3} \right]$$

$$= \frac{96}{3} - \frac{32}{3} + \frac{96}{3} - \frac{32}{3}$$

$$= \frac{129}{3} - \frac{32}{3} + \frac{96}{3} - \frac{32}{3}$$

1

5. Find the area between the curves, exact values. Include a sketch.

a)
$$y = x^2 - 6x$$
 and $y = 2x - x^2$.

$$A = \int_{0}^{4} (\partial x - x^2) - (x^2 - 6x) dx$$

$$= \int_{0}^{4} 8x - \partial x^2 c(x)$$

$$= (4x^2 - 2x^2) \int_{0}^{4} x^2$$

$$= (4x^2 - 2x^2) \int_{0}^{4} x^2$$

$$= \int_{0}^{4} (4x^2 - 2x^2) \int_{0}^{4} x^2$$

