Find the indefinite integral.

$$
\begin{aligned}
& \text { a) } \int 2 x^{3} d x \\
& =\frac{2\left(\frac{1}{4} x^{4}\right)+c}{=} \frac{1}{2} x^{4}+c
\end{aligned}
$$

b) $\int\left(x^{2}+3 e^{-x}+4 \sin x\right) d x$.

$$
=\frac{1}{3} x^{3}+3 e^{-x}\left(\frac{1}{-1}\right)+4(-\cos x)+c
$$

$$
=\frac{1}{3} x^{3}-3 e^{-x}-4 \cos x+c^{4}
$$

$$
=\frac{1}{3} x^{3}-\frac{3}{e^{x}}-4 \cos x+c
$$

2. Determine the integral for the existing conditions.
a) $\int(2 x+1) d x$ and $y=8$ when $x=-2$.
b) Suppose $F^{\prime}(x)=3 \sqrt{x}-6$ and the point $(4,2)$ is on $y=F(x)$. Find $F(x)$.

$$
\begin{aligned}
& y=2\left(\frac{1}{2} x^{2}\right)+x+c \\
& y=x^{2}+x+c \\
& 8=(-2)^{2}+(-2)+c \\
& \theta=4-2+c \\
& c=6
\end{aligned}
$$

$$
y=x^{2}+x+6
$$

$$
\begin{aligned}
F(x) & =\int 3(x)^{1 / 2}-6 \\
& =3\left(\frac{2}{3} x^{3 / 3}\right)-6 x+c \\
F(x) & =2 x^{3 / 2}-6 x+C \\
2 & =2(4)^{3 / 2}-6(4)+C \\
2 & =16-24+C \\
10 & =C \\
F(x) & =2 x^{3 / 2}-6 x+10 \\
& =2\left(x^{3 / 2}-3 x+5\right)
\end{aligned}
$$

$$
\begin{aligned}
& \int(2 x+1) d x=\frac{(2 x+)^{2}}{l^{2} x+2}+c \\
& b=[2(-2)+]^{2} \\
& 8=\frac{9}{4}+c
\end{aligned} \quad f(x)=2 x
$$

6
3. Determine the following indefinite integrals.
a) $\int\left(6 x^{2}\left(4 x^{3}+9\right)^{9}\right) d x$
b) $\int\left(e^{\cos x} \sin x\right) d x$
4. A pebble is tossed upward at $25 \mathrm{~m} / \mathrm{s}$ from the edge of a bridge 46 m above the river below. How many seconds elapse between the toss and the splash? Round your answer off to the nearest tenth of a second.

$$
t \neq-1.4, t=6.5 \mathrm{~s}
$$

$$
\begin{aligned}
& a=-9.8 \mathrm{~m} / \mathrm{s}^{2} \\
& V=\int-9.8 d t \\
& V=-9.0 t+c \text { o00 } V=25, t=0 \\
& \therefore V=-9.8 \leq+25 \\
& s=\int-4.8 t+25 d t \\
& s=-4.9 t^{2}+25 t+C \quad s=46, t=0 \\
& \therefore \quad S=-4.9 t^{2}+25 t+46 \\
& t=? \text { when } s=0 \\
& t=\frac{-25 \pm \sqrt{25^{2}-4(-4.9)(46)}}{2(-4.4)} \\
& 0=-4.4 t^{2}+25 t+46
\end{aligned}
$$

$$
\begin{aligned}
& 0 x=4 x^{3}+9 \\
& \int 6 x^{2}(x)^{6} \frac{d x}{12 x^{2}} \\
& \left.\overline{d x}=12 x^{2} \quad \therefore d x=\frac{d u}{122^{2}}\right]=\int \frac{1}{2} u^{4} d u \\
& u=\cos x \\
& \frac{d u}{d x}=-\sin x \quad \therefore d x=\frac{d u}{-\sin x} \\
& =\int e^{4} \sin x \frac{d x}{-\sin x} \\
& =6 x^{2}\left(\frac{4 x^{3}+9}{10}\right)^{10}\left(\frac{1}{12 x^{2}}\right)=\frac{1}{20}\left(4 x^{3}+9\right)^{10}+c \\
& =\int-e^{u} d u \\
& =-e^{4}+c \Rightarrow=-e^{\cos x}+c \\
& =\frac{1}{20}\left(4 x^{3}+4\right)^{10}+c \\
& \int e^{\cos x} \sin x d x=e^{\cos x} \sin x\left(-\frac{1}{-\sin x}\right)+c \\
& =-e^{\cos x}+c
\end{aligned}
$$

5. Sketch and find the area of the region
a) between the x-axis and the curve $y=\frac{2}{3} x+6$,
b) bounded by the curve $y=8-\frac{1}{2} x^{2}$ and the x-axis. from $x=-9$ to $x=3$.

$$
\begin{gathered}
0=8-\frac{1}{2} x^{2} \\
\frac{1}{2} x^{2}=4 \\
x^{2}=16 \\
x= \pm 4
\end{gathered}
$$

$$
A=\int_{-1}^{3} \frac{2}{3} x+6 d x
$$

$$
\left.=\frac{1}{3} x^{2}+6 x\right]_{-4}^{3}
$$

$$
A=\int_{-4}^{4} 0-\frac{1}{2} x^{2} d x
$$

$$
=\left[\frac{1}{3}(3)^{2}+6(3)\right]-\left[\frac{1}{3}(-4)^{2}+6(-4)\right]
$$

$$
=\left[8 x-\frac{1}{6} x^{3}\right]_{-4}^{4}
$$

$$
=(3+18)-(27-54)
$$

$$
=21+27
$$

$$
=\left[8(4)-\frac{1}{6}(4)^{3}\right]-\left[8(-4)-\frac{1}{6}(-4)^{3}\right.
$$

$$
=\left[32-\frac{32}{3}\right]-\left[-32+\frac{32}{3}\right]
$$

$$
=\frac{96}{3}-\frac{32}{3}+\frac{46}{3}-\frac{32}{3}
$$

$$
=\int^{3} \frac{1}{x^{2}}+\frac{3 x}{x^{2}} d x
$$

$$
=\frac{100}{3} \text { units }{ }^{2}
$$

$$
\begin{aligned}
& =\int_{1}^{3} x^{-2}+\frac{3}{x} d x \\
& \left.=-x^{-1}+3 \ln x\right]_{1}^{3} \\
& =\left(-3^{-1}+3 \ln 3\right)-\left(-1^{-1}+3 \ln 1\right) \\
& =-\frac{1}{3}+\ln 27+1+\ln 1
\end{aligned}
$$

7. Find the area between the curves, exact values. Include a sketch.

$$
x^{2}-6 x=2 x-x^{2}
$$

$$
2 x^{2}-8 x=0
$$

$$
2 x(x-4)=0
$$

$x=0 \quad x=4$

$$
\begin{aligned}
A & =\int_{0}^{4}\left(2 x-x^{2}\right)-\left(x^{2}-6 x\right) d x \\
& =\int_{0}^{4} 8 x-2 x^{2} d x \\
& \left.=4 x^{2}-\frac{2}{3} x^{3}\right]_{0}^{4} \\
& =\left[4(4)^{2}-\frac{2}{3}(4)^{3}\right]-[0] \\
& =64-\frac{128}{3} \\
& =\frac{64}{3} \text { units }^{2}
\end{aligned}
$$

b) $y=2 \sin x$ and $y=1$ from $x=\frac{\pi}{6}$ to $x=\frac{5 \pi}{6}$, exact values.

$$
2 \sin x=1 \quad \text { sin } x=\frac{1}{2} \quad \text { on } \quad x=\frac{\pi}{6}, \frac{5 \pi}{6}
$$

$$
\begin{aligned}
&\left.A=\int_{\frac{\pi}{6}}^{\frac{5 \pi}{6}} 2 \sin x-1 d x=-2 \cos x-x\right]_{\frac{\pi}{6}}^{\frac{5 \pi}{6}} \\
&=\left[-2 \cos \frac{5 \pi}{6}-\frac{5 \pi}{6}\right]-\left[-2 \cos \frac{\pi}{6}-\frac{\pi}{6}\right] \\
&=-2\left(-\frac{\sqrt{3}}{2}\right)-\frac{5 \pi}{6}+2\left(\frac{\sqrt{3}}{2}\right)+\frac{\pi}{6} \\
&=\sqrt{3}-\frac{5 \pi}{6}+\sqrt{3}+\frac{\pi}{6}=2 \sqrt{3}-\frac{2 \pi}{3} \text { oR } \frac{6 \sqrt{3}-2 \pi}{2} \text { is }
\end{aligned}
$$

