\qquad
Date \qquad

CURVE SKETCHING HW \#2

1. Given, $f(x)=\frac{x^{2}-4 x-12}{x^{2}-9}$

Find the vertical and horizontal asymptotes of the curve.
2. Identify the intervals of increase and decrease for $y=f(x)$ given $f^{\prime}(x)=\frac{x-1}{(x+2)^{2}}$.
3. Identify the intervals of concave up and concave down for $y=f(x)$ given $f^{\prime \prime}(x)=\frac{x-10}{\sqrt{x+3}}$.
[3]
4. For the curve $y=2 x^{3}-9 x^{2}+12 x-10$, find the local maximum and/or minimum values. Justify.
[4]
5. For the curve $y=2 x^{3}+12 x^{2}+18 x+5$
a) Find the intervals of increase and decrease.
[5]
b) Find the intervals of concavity.
c) Find any inflection points.
6. Find the following limits:
a) $\lim _{x \rightarrow \infty} x^{3}+3 x^{2}-4$
b) $\lim _{x \rightarrow-\infty} x^{3}+3 x^{2}-4$
[4]
c) $\lim _{x \rightarrow \infty}(x-3)(x+2)^{2}(2-x)$
d) $\lim _{x \rightarrow-\infty}(x-3)(x+2)^{2}(2-x)$
7. Find the equations for the vertical and horizontal asymptotes:
a) $y=\frac{4 x-3}{2 x+4}$
b) $y=\frac{x}{x^{2}+x-6}$
8. Given the following properties, sketch the curve for $f(x)$.

The domain is $\{x \in R\}$. There are no x-intercepts and $f(0)=-4$. There are no vertical asymptotes. The horizontal asymptote is the line $y=-\frac{1}{2}$. The interval of decrease is $(-\infty, 0)$ and the interval of increase is $(0, \infty) . \quad f(x)$ is concave downward on $(-\infty,-1) \cup(1, \infty)$ and is concave upward on $(-1,1)$. The points of inflection are at $(\pm 1,-3)$.

7. Sketch the function given:
[2]
The domain is $\{x \neq \pm 2\}$. The intercepts are both at 0 and $f(0)$ is a local minimum. The vertical asymptotes are $x=2$ and $x=-2$. The horizontal asymptote is the line $y=-4$. The interval of increase is $(0,2) \cup(2, \infty)$. The interval of decrease is $(-\infty,-2) \cup(-2,0) . \quad f(x)$ is concave upward on $(-2,2)$. $f(x)$ is concave downward on $(-\infty,-2) \cup(2, \infty)$. There are no points of inflection.

