Derivative of the Exponential Function With Base e

Objectives: Find the derivative of exponential functions.

Estimations of *e*

If you began walking at 1 km/h and then doubled your speed over a one-minute interval, you would be walking at 2 km/h. But suppose you increased your speed by 50% every half-minute. How fast would you be walking at the end of one minute?

Suppose you increased your speed by 25% every quarter-minute (15 seconds). What would your speed be at the end of one minute? Remember, your speed would be 1.25 times as fast every quarter-minute. Complete the chart below

Time Elapsed (s)	0	15	30	45	60
Speed (km/h)					

Generate an expression to find your speed at the end of one minute.

Suppose you increased your speed by $\frac{1}{10}$ for every tenth of a minute. What would your speed be at the end of one minute?

Complete the table for each increase in speed for and equal portion of a minute.

Increase in speed	Speed at the end of 1 minute
1	
$\overline{10}$	
1	
1000	
1	
100000	
1	
1000000	
1	
100000000	

Derivatives of
$$y = e^{\mathcal{X}}$$

e can be defined as:
$$e = \lim_{n \to \infty} \left[1 + \frac{1}{n} \right]^n$$

Investigate: Why is *e* such a special number?

Use your calculator to sketch $y = e^{x}$. Find the values of e^{x} at x = 1,3,5

Find the derivative of $y = e^x$ at x = 1,3,5 using your calculator.

State the value of
$$\frac{dy}{dx}e^x$$

Chain Rule: $f(x) = e^u$ then $f'(x) = e^u \cdot \frac{du}{dx}$

1. Differentiate a) $y = x^3 e^x$ b) $y = e^{x^2}$ c) $y = x^5 e^{x^5}$

2. Find the absolute maximum value of the function $f(x) = xe^{-x}$ using the first or second derivative test.

- 3. Given: $f(x) = e^{-x^2}$
 - a) Sketch the function.
 - b) Differentiate the function.

Homework: Page 366 # 1, 4 (a,b,d,g,h,k,l) , 5, 8, 10, 11(a,b)

Calculus, A First Course. McGraw-Hill Ryerson Limited, 1989.

- 1. Simplify.
 - (a) $\frac{2}{e^{-x}}$ (b) $(e^{x})^{4}$ (c) $e^{1-x}e^{3x}$ (d) $e^{x}e^{-x}$ (e) $e^{2x}(1-5e^{3x})$ (f) $\frac{6e^{8x}}{e^{3x}}$
- 4. Differentiate.

(a)	$y = 2e^{-x}$	(b) $y = x^4 e^x$
(c)	$y = e^{2x} \sin 3x$	(d) $y = e^{\sqrt{x}}$
(e)	$y = e^{\tan x}$	(f) $y = \tan(e^x)$
(g)	$y = \frac{e^x}{x}$	(h) $y = \frac{e^x}{1 - e^{2x}}$
(i)	$y = e^{\sin(x^2)}$	(j) $y = xe^{\cot 4x}$
(k)	$y = (1 + 5e^{-10x})^4$	(1) $y = \sqrt{x + e^{1-x^2}}$

- 5. Find the equation of the tangent line to the curve $y = 1 + xe^{2x}$ at the point where x = 0.
 - 8. Find the intervals of increase and decrease for the function $f(x) = x^2 e^{-x}$.

9. Find the absolute minimum value of the function $f(x) = \frac{e^x}{x}$, x > 0.

- 10. For the function $f(x) = xe^x$, find
 - (a) the absolute minimum value,
 - (b) the intervals of concavity,
 - (c) the inflection point.
- Evaluate.

(a)
$$\lim_{x \to \infty} e^{-x}$$
 (b) $\lim_{x \to -\infty} e^{-x}$ (c) $\lim_{t \to \frac{\pi}{2}^+} e^{\tan t}$

The Natural Logarithm

Objectives:

Use natural logarithms " $y = log_e x$ is the same as y = lnx" to simplify, change forms, solve equations.

Warm up: Given the function $y = e^x$ sketch $y = \ln x$

 $\ln x = \log_e x$ is called the natural logarithm.

- 1. Simplify the following:
 - a) $\ln e^x$ b) $e^{\ln x}$ c) $\ln e$ d) $\ln 1$
- 2. Solve for *x* in the following: a) $\ln x = 5$ b) $e^x = 20.086$ c) $e^{3-2x} = 4$
- 3. Sketch the graphs of the following functions. a) $y = -\ln x$ b) $y = \ln(-x)$
- 4. Express $\frac{2}{3} \ln x 4 \ln y + \ln(x+1)$ as a single logarithm.
- 5. Find the domain of the function $f(x) = \ln(16 x^2)$
- 6. Find $\lim_{x \to 4^-} \ln(16 x^2)$

Homework: Page 375 #3,4,5,6,9(a,b),10.

The Derivative of Logarithmic Functions

Objectives: Find Derivatives of Logarithmic functions.

Use the exponential form and implicit differentiation to find the derivative of $y = \ln x$ " $y = \ln x$ is the same as $y = \log_e x$ is the same as $e^y = x$ "

SUMMARY: $y = \ln(u) \dots \frac{dy}{dx} =$

Examples:

- 1. Differentiate
 - a) $y = x^2 \ln x$ b) $y = \ln(x^2 + 1)$
 - c) $y = (\ln x)^3$ d) $y = x \ln x$

e)
$$y = \ln \frac{x}{\sqrt{x+1}}$$
 f) $y = \ln |x|$

2. Find the derivative of $y = \log_3 x$

3. Develop a formula for finding $\frac{d}{dx}\log_b x$ using what you discovered above.

4. Find f'(x) if $f(x) = \log(x^2 + x)$

Homework: Page 383 #1(a,b,c,d,e,g,h,j,k,l) 3, 5(a,b,d) Calculus, A First Course. McGraw-Hill Ryerson Limited, 1989.

B 1.	Differentiate.		
	(a) $f(x) = x^2 \ln x$	(b) $f(x) = \sqrt{\ln x}$	
	(c) $g(x) = \ln(x^3 + 1)$	(d) $g(x) = \ln(5x)$	
	(e) $y = \sin(\ln x)$	(f) $y = \ln(\sin x)$	
	(g) $y = \frac{\ln x}{x^3}$	(h) $y = (x + \ln x)^3$	
	(i) $y = \ln 2x + 1 $	(j) $y = \ln\left(\frac{x+1}{x-1}\right)$	
	(k) $y = \ln \sqrt{\frac{x}{2x+3}}$	(1) $y = \ln \frac{x}{\sqrt{x^2 + 1}}$	
	(m) $y = \ln(\sec x + \tan x)$	(n) $y = \tan[\ln(1 - 3x)]$	
2.	(a) If $f(x) = \ln(\ln x)$, find $f'(x)$	<i>:</i>).	
	(b) Find the domains of f and f	f'.	
3.	Find the derivative of each function.		
	(a) $f(x) = \log_2(x^2 + 1)$	(b) $g(x) = x \log_{10} x$	
	(c) $F(x) = \log_5(3x - 8)$	(d) $G(x) = \frac{1 + \log_3 x}{x}$	
5.	Find the equation of the tangent lin	e to each curve at the given	

point. (a) $y = \ln(x - 1)$, (2,0) (b) $y = x^2 \ln x$, (1,0) (c) $y = 10^x$, (1,10) (d) $y = \log_{10} x$, (100,2)

The Derivative of Exponential Functions

Objective: Use log differentiation to find derivatives.

Skills:

- Find the derivative of $y = 2^x$.
- Use the log differentiation process to find the derivative of $y = b^x$, where b is a constant.

Examples:

- 1. Find the derivative of $y = 5^{3x}$.
- 2. Differentiate $y = \frac{e^x \sqrt{x^2 + 1}}{(x^2 + 2)^3}$ by taking the ln of both sides. This is referred to as

logarithmic Differentiation.

3. Use logarithmic differentiation to find the derivative of

a)
$$y = (x^2 + 1)^4 (x^3 + 2x^2)^3$$

b) $y = x^{x^{2+5}}$ (only possible using ln differentiation- not a constant for a base, not a constant for an exponent)