Derivative of the Exponential Function With Base e

Objectives: Find the derivative of exponential functions.

Estimations of e

If you began walking at $1 \mathrm{~km} / \mathrm{h}$ and then doubled your speed over a one-minute interval, you would be walking at $2 \mathrm{~km} / \mathrm{h}$. But suppose you increased your speed by 50% every half-minute. How fast would you be walking at the end of one minute?

Suppose you increased your speed by 25% every quarter-minute (15 seconds). What would your speed be at the end of one minute? Remember, your speed would be 1.25 times as fast every quarter-minute. Complete the chart below

Time Elapsed (s)	0	15	30	45	60
Speed (km/h)					

Generate an expression to find your speed at the end of one minute.

Suppose you increased your speed by $\frac{1}{10}$ for every tenth of a minute. What would your speed be at the end of one minute?

Complete the table for each increase in speed for and equal portion of a minute.

Increase in speed	Speed at the end of 1 minute
$\frac{1}{10}$	
$\frac{1}{1000}$	
$\frac{1}{100000}$	
$\frac{1}{10000000}$	
$\frac{1}{1000000000}$	

Derivatives of $y=e^{x}$

\boldsymbol{e} can be defined as: $e=\lim _{n \rightarrow \infty}\left[1+\frac{1}{n}\right]^{n}$

Investigate:
Why is e such a special number?

Use your calculator to sketch $y=e^{x}$.
Find the values of e^{x} at $x=1,3,5$

Find the derivative of $y=e^{x}$ at $x=1,3,5$ using your calculator.

State the value of $\frac{d y}{d x} e^{x}$

$y=2^{x}$ and $y=e^{x}$

Chain Rule: $f(x)=e^{u} \quad$ then $\quad f^{\prime}(x)=e^{u} \cdot \frac{d u}{d x}$

1. Differentiate
a) $y=x^{3} e^{x}$
b) $y=e^{x^{2}}$
c) $y=x^{5} e^{x^{5}}$
2. Find the absolute maximum value of the function $f(x)=x e^{-x}$ using the first or second derivative test.
3. Given: $f(x)=e^{-x^{2}}$
a) Sketch the function.
b) Differentiate the function.

Homework: Page 366 \# 1, 4 (a,b,d,g,h,k,l) , 5, 8, 10, 11(a,b)
Calculus, A First Course. McGraw-Hill Ryerson Limited, 1989.

1. Simplify.
(a) $\frac{2}{e^{-x}}$
(b) $\left(e^{x}\right)^{4}$
(c) $e^{1-x} e^{3 x}$
(d) $e^{x} e^{-x}$
(e) $e^{2 x}\left(1-5 e^{3 x}\right)$
(f) $\frac{6 e^{8 x}}{e^{3 x}}$
2. Differentiate.
(a) $y=2 e^{-x}$
(b) $y=x^{4} e^{x}$
(c) $y=e^{2 x} \sin 3 x$
(d) $y=e^{\sqrt{x}}$
(e) $y=e^{\tan x}$
(f) $y=\tan \left(e^{x}\right)$
(g) $y=\frac{e^{x}}{x}$
(h) $y=\frac{e^{x}}{1-e^{2 x}}$
(i) $y=e^{\sin \left(x^{2}\right)}$
(j) $y=x e^{\cot 4 x}$
(k) $y=\left(1+5 e^{-10 x}\right)^{4}$
(l) $y=\sqrt{x+e^{1-x^{2}}}$
3. Find the equation of the tangent line to the curve $y=1+x e^{2 x}$ at the point where $x=0$.
4. Find the intervals of increase and decrease for the function $f(x)=x^{2} e^{-x}$.
5. Find the absolute minimum value of the function $f(x)=\frac{e^{x}}{x}, x>0$.
6. For the function $f(x)=x e^{x}$, find
(a) the absolute minimum value,
(b) the intervals of concavity,
(c) the inflection point.
7. Evaluate.
(a) $\lim _{x \rightarrow \infty} e^{-x}$
(b) $\lim _{x \rightarrow-\infty} e^{-x}$
(c) $\lim _{t \rightarrow \frac{\pi}{2}^{+}} e^{\tan t}$

The Natural Logarithm

Objectives:

Use natural logarithms " $y=\log _{e} x$ is the same as $y=\ln x$ " to simplify, change forms, solve equations.

Warm up: Given the function $y=e^{x}$ sketch $y=\ln x$

$\ln x=\log _{e} x$ is called the natural logarithm.

1. Simplify the following:
a) $\ln e^{x}$
b) $e^{\ln x}$
c) $\ln e$
d) $\ln 1$
2. Solve for x in the following:
a) $\ln x=5$
b) $e^{x}=20.086$
c) $e^{3-2 x}=4$
3. Sketch the graphs of the following functions.
a) $y=-\ln x$
b) $y=\ln (-x)$
4. Express $\frac{2}{3} \ln x-4 \ln y+\ln (x+1)$ as a single logarithm.
5. Find the domain of the function $f(x)=\ln \left(16-x^{2}\right)$
6. Find $\lim _{x \rightarrow 4^{-}} \ln \left(16-x^{2}\right)$

Homework: Page 375 \#3,4,5,6,9(a,b),10.

The Derivative of Logarithmic Functions

Objectives: Find Derivatives of Logarithmic functions.
Use the exponential form and implicit differentiation to find the derivative of $y=\ln x$ " $y=\ln x$ is the same as $y=\log _{e} x$ is the same as $e^{y}=x "$

SUMMARY: $y=\ln (u) \ldots \frac{d y}{d x}=$

Examples:

1. Differentiate
a) $y=x^{2} \ln x$
b) $y=\ln \left(x^{2}+1\right)$
c) $y=(\ln x)^{3}$
d) $y=x \ln x$
e) $y=\ln \frac{x}{\sqrt{x+1}}$
f) $y=\ln |x|$
2. Find the derivative of $y=\log _{3} x$
3. Develop a formula for finding $\frac{d}{d x} \log _{b} x$ using what you discovered above.
4. Find $f^{\prime}(x)$ if $f(x)=\log \left(x^{2}+x\right)$

Homework: Page 383 \#1(a,b,c,d,e,g,h,j,k,l) 3, 5(a,b,d)
Calculus, A First Course. McGraw-Hill Ryerson Limited, 1989.
B 1. Differentiate.
(a) $f(x)=x^{2} \ln x$
(b) $f(x)=\sqrt{\ln x}$
(c) $g(x)=\ln \left(x^{3}+1\right)$
(d) $g(x)=\ln (5 x)$
(e) $y=\sin (\ln x)$
(f) $y=\ln (\sin x)$
(g) $y=\frac{\ln x}{x^{3}}$
(h) $y=(x+\ln x)^{3}$
(i) $y=\ln |2 x+1|$
(j) $y=\ln \left(\frac{x+1}{x-1}\right)$
(k) $y=\ln \sqrt{\frac{x}{2 x+3}}$
(1) $y=\ln \frac{x}{\sqrt{x^{2}+1}}$
(m) $y=\ln (\sec x+\tan x)$
(n) $y=\tan [\ln (1-3 x)]$
2. (a) If $f(x)=\ln (\ln x)$, find $f^{\prime}(x)$.
(b) Find the domains of f and f^{\prime}.
3. Find the derivative of each function.
(a) $f(x)=\log _{2}\left(x^{2}+1\right)$
(b) $g(x)=x \log _{10} x$
(c) $F(x)=\log _{5}(3 x-8)$
(d) $G(x)=\frac{1+\log _{3} x}{x}$
5. Find the equation of the tangent line to each curve at the given point.
(a) $y=\ln (x-1),(2,0)$
(b) $y=x^{2} \ln x,(1,0)$
(c) $y=10^{x},(1,10)$
(d) $y=\log _{10} x,(100,2)$

The Derivative of Exponential Functions

Objective: Use log differentiation to find derivatives.

Skills:

- Find the derivative of $y=2^{x}$.
- Use the log differentiation process to find the derivative of $y=b^{x}$, where b is a constant.

Examples:

1. Find the derivative of $y=5^{3 x}$.
2. Differentiate $y=\frac{e^{x} \sqrt{x^{2}+1}}{\left(x^{2}+2\right)^{3}}$ by taking the \ln of both sides. This is referred to as logarithmic Differentiation.
3. Use logarithmic differentiation to find the derivative of
a) $y=\left(x^{2}+1\right)^{4}\left(x^{3}+2 x^{2}\right)^{3}$
b) $y=x^{x^{2}+5} \quad$ (only possible using \ln differentiation- not a constant for a base, not a constant for an exponent)
