The Limits of Trigonometric Expressions

Review Limits (evaluate):

$$
\lim _{x \rightarrow 5} \sqrt{x+4} \quad \lim _{x \rightarrow 5} \frac{x^{2}-6 x+5}{x^{2}-25}
$$

Outcomes: Find the limits of sine and cosine and simple modifications to them.
Warm up: Sketch the curve of sine

Sketch the curye of cosine

Investigate: Look at the left- and right-hand limits of $\sin \theta$ and $\cos \theta$ as $x \rightarrow 0$ Since we know that sine and cosine are continuous graphs state the value of $\lim _{\theta \rightarrow 0} \sin \theta$ and $\lim _{\theta \rightarrow 0} \cos \theta$.

Examples:

1. Evaluate limits, not divide by zero.
a) $\lim _{\theta \rightarrow \pi} \frac{\sin \theta}{2}$
b) $\lim _{x \rightarrow 0}(\sin x+x)$.
c) $\lim _{x \rightarrow \pi}(\sin x+\cos x)$
d) $\lim _{x \rightarrow \frac{\pi}{2}} \frac{\sin x+1}{\cos x+1}$
e) $\lim _{x \rightarrow \frac{3 \pi}{2}} \frac{\cos x}{2 x}$
f) $\lim _{x \rightarrow 0} \frac{\cos 2 x}{3 \cos 3 x}$

Investigate: Some limits which will be very important to trigonometric functions are:

$$
\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta} \text { or } \lim _{\theta \rightarrow 0} \frac{\theta}{\sin \theta} \text { and } \lim _{\theta \rightarrow 0} \frac{\cos \theta-1}{\theta}
$$

These limits are necessary in order to find the derivatives of trigonometric functions.

Graph: $y=\frac{\sin \theta}{\theta} \quad$ What does the graph indicate the $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}$ is equal to?

Graph: $y=\frac{\cos \theta-1}{\theta}$ What does the graph indicate the $\lim _{\theta \rightarrow 0} \frac{\cos \theta-1}{\theta}$ is equal to?

Examples:

2. Evaluate limits, dividing by zero: Graphically to see Algebraically to justify when $\left(\frac{0}{0}\right)$.
a) $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{2 \theta}$
b) $\lim _{\theta \rightarrow 0} \frac{\sin 3 \theta}{\theta}$

c) $\lim _{\theta \rightarrow 0} \frac{\sin ^{2} \theta}{\theta}$
d) $\lim _{x \rightarrow 0} x \sec x$.
e) $\lim _{x \rightarrow 0} \frac{\tan x}{\sin x}$.
f) $\lim _{x \rightarrow 0} \frac{\sin 4 x}{\sin 3 x}$

g) $\lim _{\theta \rightarrow \frac{\pi}{2}} \frac{\sin \theta}{2 \theta}$
h) $\lim _{x \rightarrow 0} \frac{\sin ^{2} 3 x}{\sin ^{2} 4 x}$
i) $\lim _{x \rightarrow \frac{\pi}{4}} \frac{\cos 2 x}{\cos x-\sin x}$
j) $\lim _{x \rightarrow 0} \frac{\tan x}{\tan 2 x}$

Homework: Page 306: 1,2,7,9, 11,12,13,15,16,17,18,19,20,21,23,27,31,33

Derivatives of the Primary Trigonometric Ratios

Given: $\lim _{x \rightarrow 0} \frac{\cos x-1}{x}=0$ and $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$
Outcomes: Find derivatives of sine and cosine and simple modifications to them.
Recall: the derivative of a function was the slope of the tangent to a curve and that

$$
\frac{d y}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} . \text { This is the definition of derivative using the concept }
$$ of first principles.

1. Determine the derivative of $y=\sin (x)$

- Using first principles.
- Given the curve of $y=\sin (x)$. Use the concept of tangent line slopes to graphically find the derivative of $y=\sin (x)$.

2. Determine the derivative of $y=\cos (x)$.

- Given the curve of $y=\cos (x)$. Use the concept of tangent line slopes to graphically find the derivative of $y=\cos (x)$.

If $y=\sin u$ or $y=\cos u$ is a composition of two functions, use the chain rule:

- $\frac{d}{d x} \sin u=\cos u \times \frac{d u}{d x}$
- $\frac{d}{d x} \cos u=-\sin u \times \frac{d u}{d x}$

Examples:

1. Find the derivative of the following
a) $y=\sin 2 x$
b) $y=\sin \left(x^{2}-1\right)$
c) $y=x \sin x$
d) $y=\frac{x}{\sin x}$
e) $y=\cos ^{2} x$
f) $y=\cos (a x+b)$
g) $y=\cos (\sin x)$
h) Differentiate implicitly $\sin x+\sin y=1$
2. Find the equation of the tangent line to $y=\frac{\sin x}{\cos 2 x}$ at $x=\frac{\pi}{6}$

Homework:
Calculus, A First Course. McGraw-Hill Ryerson Limited, 1989.
Pg 313\# 1 (second column), 2, 3(a,e), 4(a), 5(b), 11(a, c)
B 1. Find the derivative of y with respect to x in each of the following.
(a) $y=\cos (-4 x)$
(b) $y=\sin (3 x+2 \pi)$
(c) $y=4 \sin \left(-2 x^{2}-3\right)$
(d) $y=-\frac{1}{2} \cos (4+2 x)$
(e) $y=\sin x^{2}$
(f) $y=-\cos x^{2}$
(g) $y=\sin ^{-2}\left(x^{3}\right)$
(h) $y=\cos \left(x^{2}-2\right)^{2}$
(i) $y=3 \sin ^{4}(2-x)^{-1}$
(j) $y=x \cos x$
(k) $y=\frac{x}{\sin x}$
(l) $y=\frac{\sin x}{1+\cos x}$
(m) $y=\left(1+\cos ^{2} x\right)^{6}$
(n) $y=\sin \frac{1}{x}$
(o) $y=\sin (\cos x)$
(p) $y=\cos ^{3}(\sin x)$
(q) $y=x \cos \frac{1}{x}$
(r) $y=\frac{\sin ^{2} x}{\cos x}$
(s) $y=\frac{1+\sin x}{1-\sin 2 x}$
(t) $y=\sin ^{3} x+\cos ^{3} x$
(u) $y=\cos ^{2}\left(\frac{1-\sqrt{x}}{1+\sqrt{x}}\right)$
2. Find $\frac{d y}{d x}$ in each of the following.
(a) $\sin y=\cos 2 x$
(b) $x \cos y=\sin (x+y)$
(c) $\sin y+y=\cos x+x$
(d) $\sin (\cos x)=\cos (\sin y)$
(e) $\sin x \cos y+\cos x \sin y=1$
(f) $\sin x+\cos 2 x=2 x y$
3. Find an equation of the tangent line to the given curve at the given point.
(a) $y=2 \sin x$ at $\left(\frac{\pi}{6}, 1\right)$
(b) $y=\frac{\sin x}{\cos x}$ at $\left(\frac{\pi}{4}, 1\right)$
(c) $y=\frac{1}{\cos x}-2 \cos x$ at $\left(\frac{\pi}{3}, 1\right)$
(d) $y=\frac{\cos ^{2} x}{\sin ^{2} x}$ at $\left(\frac{\pi}{4}, 1\right)$
(e) $y=\sin x+\cos 2 x$ at $\left(\frac{\pi}{6}, 1\right)$
(f) $y=\cos (\cos x)$ at $x=\frac{\pi}{2}$
4. Find the critical numbers, the intervals of increase and decrease, and any maximum or minimum values.
(a) $y=\sin ^{2} x,-\pi \leqslant x \leqslant \pi$
(b) $y=\cos x-\sin x,-\pi \leqslant x \leqslant \pi$
5. Determine the concavity and find the points of inflection.
(a) $y=2 \cos x+\sin 2 x, 0 \leqslant x \leqslant 2 \pi$
(b) $y=4 \sin ^{2} x-1,-\pi \leqslant x \leqslant \pi$
11. Find $\frac{d y}{d x}$ in each of the following.
(a) $y=\frac{1}{\sin (x-\sin x)}$
(b) $y=\sqrt{\sin \sqrt{x}}$
(c) $y=\sqrt[3]{x \cos x}$
(d) $y=\cos ^{3}(\cos x)+\sin ^{2}(\cos x)$
(e) $y=\sqrt{\cos \left(\sin ^{2} x\right)}$

Derivatives of the Other Trigonometric Ratios

Outcomes: Find derivatives of tangent, cosecant, secant and cotangent

Investigate:

1. Write $\tan x$ in terms of sine and cosine. Use the quotient rule to find the derivative of $\tan x$.
2. Write $\sec x$ in terms of cosine Find the derivative of $\sec x$.
3. Write $\csc x$ terms of sine. Find the derivative of $\csc x$.
4. Write $\operatorname{cotan} x$ in sine and cosine. Use the quotient rule to find the derivative of $\operatorname{cotan} x$.

SUMMARY:

$$
\begin{array}{ll}
\frac{d}{d x} \tan u=\sec ^{2} u \times \frac{d u}{d x} & \frac{d}{d x} \sec u=\sec u \times \tan u \times \frac{d u}{d x} \\
\frac{d}{d x} \csc u=-\csc u \times \cot u \times \frac{d u}{d x} & \frac{d}{d x} \cot u=-\csc ^{2} u \times \frac{d u}{d x}
\end{array}
$$

Use previous rules and function properties to differentiate etc

1. Find the derivative of the following
a) $y=x^{2} \tan x$
b) $y=\sin x+\tan x$
c) $y=\frac{\tan ^{2} x}{x}$
d) $y=\sqrt{\tan 2 x}$
e) $y=\frac{1}{\tan x+1}$
f) $y=\sec \left(x^{2}+1\right)$
g) $y=\cot \sqrt{x}$.
h) $y=2 \csc 3 x$.
i) $y=2 \sec ^{2}\left(2 x^{3}\right)$
2. Find the vertical asymptotes of $y=\sec x+\tan x$ on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

Calculus, A First Course. McGraw-Hill Ryerson Limited, 1989.
Pg 319 \#1(first column), 2(a,e), 3(b,c), 7, 9(a)

1. Find the derivative of each of the following.
(a) $y=3 \tan 2 x$
(b) $y=\frac{1}{3} \cot 9 x$
(c) $y=12 \sec \frac{1}{4} x$
(d) $y=-\frac{1}{4} \csc (-8 x)$
(e) $y=\tan x^{2}$
(f) $y=\tan ^{2} x$
(g) $y=\sec \sqrt[3]{x}$
(h) $y=x^{2} \csc x$
(i) $y=\cot ^{3}(1-2 x)^{2}$
(j) $y=\sec ^{2} x-\tan ^{2} x$
(k) $y=\frac{1}{\sqrt{(\sec 2 x-1)^{3}}}$
(1) $y=\frac{x^{2} \tan x}{\sec x}$
(m) $y=2 x(\sqrt{x}-\cot x)$
(n) $y=\sin (\tan x)$
(o) $y=\tan ^{2}(\cos x)$
(p) $y=\left[\tan \left(x^{2}-x\right)^{-2}\right]^{-3}$
2. Find $\frac{d y}{d x}$.
(a) $\tan x+\sec y-y=0$
(b) $\tan 2 x=\cos 3 y$
(c) $\cot (x+y)+\cot x+\cot y=0$
(d) $y^{2}-\csc (x y)=0$
(e) $x^{2}+\sec \left(\frac{x}{y}\right)=0$
(f) $y^{2}=\sin (\tan y)+x^{2}$
3. Find the equations of the tangent lines.
(a) $y=\cot ^{2} x$ when $x=\frac{\pi}{4}$
(b) $y=\sin x \tan \frac{x}{2}$ when $x=\frac{\pi}{3}$
(c) $y=\csc 2 x$ when $x=-\frac{\pi}{8}$

Trigonometric Problem Solving

Objectives: Solve applications of trigonometric function questions
Problem Solving:

- Draw a diagram, label things that change with variables.
- Match the number of variables to the number of rates in the problem.
- Determine which trig ratio to work with - you may have two choices, select the easiest one to derive.
- Put rates into the question - it's usually time: $d / d t$
- Solve for the moment - we usually need to solve for one piece of the puzzle on our own.

1. The beam of a lighthouse sweeps across the path of a boat cruising at a speed of 30 km / h parallel to the shoreline. If the boat is 2 km from the shore and stays within the beam of the light, at what rate is the beam revolving (in rad/h) when the boat has sailed 4 km from a point opposite the lighthouse.
2. Two sides of a triangle have lengths of 15 m and 20 m . The angle between them is increasing at $\frac{\pi}{90} \mathrm{rad} / \mathrm{s}$. How fast is the length of the third side changing when the angle between the sides is $\frac{\pi}{3}$?
3. The angle of elevation of the sun is decreasing at $\frac{1}{3} \mathrm{rad} / \mathrm{h}$. How fast is the shadow cast by a tree 10 m tall lengthening when the angle of elevation of the sun is $\frac{\pi}{3} \mathrm{rad}$?
4. A ladder 8 m long is resting against the vertical wall of a house. If the top of the ladder is sliding down the wall and the angle the ladder makes with the ground is decreasing at a rate $\frac{1}{4}$ of rad/s, how fast is the ladder sliding down the wall, when the angle is $\frac{\pi}{4}$ rad?
5. Find the maximum perimeter of a right triangle with hypotenuse 20 cm .
6. An airplane, in level flight, is approaching the spot where you are standing. The speed of the airplane is $100 \mathrm{~m} / \mathrm{s}$ and it is flying at an altitude of 1000 m . What is the rate of change of the angle of elevation q when the distance from where you are standing to a point directly below the plane is 2000 m ?

7. A video camera at ground level is filming the liftoff of a hot-air balloon that is rising vertically according to the position equation $h=2 t$, where h is in metres and t is in seconds. If the camera is 100 m from the launch site, find the rate of change of the angle of elevation of the camera 5 s after liftoff.
8. Find the local maxima and/or minima of each of the following functions.
(a) $f(x)=x-2 \sin x, 0 \leqslant x \leqslant 2 \pi$
(b) $f(x)=x+\cos x, 0 \leqslant x \leqslant 2 \pi$
(c) $f(x)=\sin ^{4} x+\cos ^{4} x, 0 \leqslant x \leqslant 2 \pi$
(d) $f(x)=x \sin x+\cos x,-\pi \leqslant x \leqslant \pi$
9. The position of a particle as it moves horizontally is described by the given equations. If s is the displacement in metres and t is the time in seconds find the absolute maximum and absolute minimum displacements.
(a) $s=2 \sin t+\sin 2 t,-\pi \leqslant t \leqslant \pi$
(b) $f(t)=\sin ^{2} t-2 \cos ^{2} t,-\pi \leqslant t \leqslant \pi$
10. The angle of elevation of the sun is decreasing at $\frac{1}{4} \mathrm{rad} / \mathrm{h}$. How fast is the shadow cast by a building of height 50 m lengthening, when the angle of elevation of the sun is $\frac{\pi}{4}$?
11. A revolving beacon is situated 925 m from a straight shore. It turns at $2 \mathrm{rev} / \mathrm{min}$. How fast does the beam sweep along the shore at its nearest point? How fast does it sweep along the shore at a point 1275 m from the nearest point?
12. Two sides of a triangle are six and eight metres in length. If the angle between them decreases at the rate of $0.035 \mathrm{rad} / \mathrm{s}$, find the rate at which the area is decreasing when the angle between the sides of fixed length is $\frac{\pi}{6}$.
13. A ladder 10 m long rests against a vertical wall. If the bottom of the ladder slides away from the wall at a speed of $2 \mathrm{~m} / \mathrm{s}$, how fast is the angle between the top of the ladder and the wall changing when the angle is $\frac{\pi}{4}$?
14. A vehicle moves along a straight path with a speed of $4 \mathrm{~m} / \mathrm{s}$. A searchlight is located on the ground 20 m from the path and is kept focused on the vehicle. At what rate (in rad/s) is the searchlight rotating when the vehicle is 15 m from the point on the path closest to the searchlight?
