\qquad
Date \qquad

Applications of Derivatives Unit Assignment

Section A

1. Find two positive numbers whose sum is 36 and the square of one number plus twice the square of the other number is a minimum.
2. A farmer wants to fence a rectangular enclosure along a straight river. It is not necessary to fence the side bordering the river. The farmer wants to use a minimum amount of fencing material to enclose an area of $3200 \mathrm{~m}^{2}$. What dimensions should the rectangular field be?
3. Find the points on $y=4-x^{2}$ that are closets to the point $(0,2) . d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Section B

1. The motion of a particle on the x-axis is described by the position function $s(t)=2 t^{3}-21 t^{2}+60 t$, $t \geq 0$ where t is measured in seconds and s in metres.
a) When is the particle at rest?
b) Sketch a graph to show the displacement of the particle for the first 6 seconds and find the total distance traveled by the particle during the first 6 seconds.
2. The position of a particle, in metres at time t seconds, is given by $s(t)=2 t^{3}-48 t^{2}$. Determine the velocity of a particle when its acceleration is zero.
3. The position function $s=\sqrt{t^{2}+1}$, gives the displacement s in metres, as a function of time t, in seconds.
a) Find the velocity and acceleration as functions of t.
b) Find the acceleration when $t=\sqrt{3}$ seconds, rounded to the nearest hundredth.

Section C

1. $\quad N=-0.025 m^{2}+12 m+3500$ represents the number of insects in a closed environment as a function of the amount of food, in grams, provided.
a) What is the rate of change of number of insects with respect to the amount of food when 200 g is provided?
b) Is the population of the insects increasing or decreasing when 200 g of food is provided. Use your answer from a) to justify your response.
2. A small stone is dropped into a pond creating a circle with a radius change of $5 \mathrm{~cm} / \mathrm{s}$. Determine the change in area of a circle, with respect to its radius, 4 seconds after the stone hits the water. [$A=\pi r^{2}$ Express your answer in terms of π.]
3. A lady, 5.5 feet tall, is walking away from a lamppost that is 22 feet high. The lady is 12 feet from the lamppost and walking at a rate of 4.4 feet/second. At what rate is her shadow increasing? [Round your answer to the nearest tenth feet/second.]

Section D

1. The length of a rectangle is increasing at a rate of $3 \mathrm{~cm} / \mathrm{s}$ and the width is decreasing at a rate of $2 \mathrm{~cm} / \mathrm{s}$. At what rate is the area of the rectangle changing when the length is 40 cm and the width is 20 cm ?
2. Gas is escaping from a spherical hot air balloon at a rate of $1.6 \mathrm{~m}^{3} / \mathrm{min}$. How fast is the surface area, $S A$, shrinking when the radius is 4.0 meters? $V=\frac{4}{3} \pi r^{3}$ and $S A=4 \pi r^{2}$

3. Sand pouring from a conveyor belt at a rate of $0.75 \mathrm{~m}^{3} / \mathrm{mil}$ and forms a conical pile. The radius of the pile is alway $\frac{3}{5}$ of the height.

At what rate is the height of the pile growing 10 minutes after the pouring starts?

The volume of a cone is given by: $V=\frac{1}{3} \pi r^{2} h$

